3.1.89 \(\int \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)} \, dx\) [89]

Optimal. Leaf size=48 \[ \frac {a c \log (\cos (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}} \]

[Out]

a*c*ln(cos(f*x+e))*tan(f*x+e)/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {3990, 3556} \begin {gather*} \frac {a c \tan (e+f x) \log (\cos (e+f x))}{f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(a*c*Log[Cos[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 3556

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3990

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(m_), x_Symbol] :> Dist
[((-a)*c)^(m + 1/2)*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])), Int[Cot[e + f*x]^(2*m)
, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2]

Rubi steps

\begin {align*} \int \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)} \, dx &=-\frac {(a c \tan (e+f x)) \int \tan (e+f x) \, dx}{\sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}\\ &=\frac {a c \log (\cos (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.60, size = 102, normalized size = 2.12 \begin {gather*} \frac {i e^{\frac {1}{2} i (e+f x)} \cos (e+f x) \csc \left (\frac {1}{2} (e+f x)\right ) \left (f x+i \log \left (1+e^{2 i (e+f x)}\right )\right ) \sqrt {a (1+\sec (e+f x))} \sqrt {c-c \sec (e+f x)}}{\left (1+e^{i (e+f x)}\right ) f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]],x]

[Out]

(I*E^((I/2)*(e + f*x))*Cos[e + f*x]*Csc[(e + f*x)/2]*(f*x + I*Log[1 + E^((2*I)*(e + f*x))])*Sqrt[a*(1 + Sec[e
+ f*x])]*Sqrt[c - c*Sec[e + f*x]])/((1 + E^(I*(e + f*x)))*f)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(126\) vs. \(2(44)=88\).
time = 0.25, size = 127, normalized size = 2.65

method result size
default \(-\frac {\left (\ln \left (\frac {-\cos \left (f x +e \right )+1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-\ln \left (\frac {2}{\cos \left (f x +e \right )+1}\right )+\ln \left (-\frac {\cos \left (f x +e \right )-1+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )\right ) \cos \left (f x +e \right ) \sqrt {\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}}\, \sqrt {\frac {a \left (\cos \left (f x +e \right )+1\right )}{\cos \left (f x +e \right )}}}{f \sin \left (f x +e \right )}\) \(127\)
risch \(\frac {\sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) x}{\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )}-\frac {2 \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) \left (f x +e \right )}{\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}-\frac {i \sqrt {\frac {a \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \sqrt {\frac {c \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )^{2}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) \ln \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right )}{\left ({\mathrm e}^{i \left (f x +e \right )}+1\right ) \left ({\mathrm e}^{i \left (f x +e \right )}-1\right ) f}\) \(323\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c-c*sec(f*x+e))^(1/2)*(a+a*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(ln((-cos(f*x+e)+1+sin(f*x+e))/sin(f*x+e))-ln(2/(cos(f*x+e)+1))+ln(-(cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))
)*cos(f*x+e)*(c*(-1+cos(f*x+e))/cos(f*x+e))^(1/2)*(a*(cos(f*x+e)+1)/cos(f*x+e))^(1/2)/sin(f*x+e)

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 42, normalized size = 0.88 \begin {gather*} -\frac {{\left (f x - \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right ) + e\right )} \sqrt {a} \sqrt {c}}{f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^(1/2)*(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-(f*x - arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1) + e)*sqrt(a)*sqrt(c)/f

________________________________________________________________________________________

Fricas [A]
time = 2.75, size = 216, normalized size = 4.50 \begin {gather*} \left [\frac {\sqrt {-a c} \log \left (\frac {a c \cos \left (f x + e\right )^{4} - {\left (\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )\right )} \sqrt {-a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \sin \left (f x + e\right ) + a c}{2 \, \cos \left (f x + e\right )^{2}}\right )}{2 \, f}, \frac {\sqrt {a c} \arctan \left (\frac {\sqrt {a c} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) - c}{\cos \left (f x + e\right )}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}{a c \cos \left (f x + e\right )^{2} + a c}\right )}{f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^(1/2)*(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(-a*c)*log(1/2*(a*c*cos(f*x + e)^4 - (cos(f*x + e)^3 + cos(f*x + e))*sqrt(-a*c)*sqrt((a*cos(f*x + e)
+ a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e))*sin(f*x + e) + a*c)/cos(f*x + e)^2)/f, sqrt(a*c)*ar
ctan(sqrt(a*c)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) - c)/cos(f*x + e))*cos(f*x + e)*si
n(f*x + e)/(a*c*cos(f*x + e)^2 + a*c))/f]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )} \sqrt {- c \left (\sec {\left (e + f x \right )} - 1\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))**(1/2)*(a+a*sec(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(e + f*x) + 1))*sqrt(-c*(sec(e + f*x) - 1)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c-c*sec(f*x+e))^(1/2)*(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(co

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}\,\sqrt {c-\frac {c}{\cos \left (e+f\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^(1/2),x)

[Out]

int((a + a/cos(e + f*x))^(1/2)*(c - c/cos(e + f*x))^(1/2), x)

________________________________________________________________________________________